Extensions 1→N→G→Q→1 with N=C33 and Q=C2xC6

Direct product G=NxQ with N=C33 and Q=C2xC6
dρLabelID
C32xC62324C3^2xC6^2324,176

Semidirect products G=N:Q with N=C33 and Q=C2xC6
extensionφ:Q→Aut NdρLabelID
C33:(C2xC6) = S3xC32:C6φ: C2xC6/C1C2xC6 ⊆ Aut C331812+C3^3:(C2xC6)324,116
C33:2(C2xC6) = C2xC33:C6φ: C2xC6/C2C6 ⊆ Aut C33186+C3^3:2(C2xC6)324,69
C33:3(C2xC6) = C6xC32:C6φ: C2xC6/C2C6 ⊆ Aut C33366C3^3:3(C2xC6)324,138
C33:4(C2xC6) = C2xS3xHe3φ: C2xC6/C2C6 ⊆ Aut C33366C3^3:4(C2xC6)324,139
C33:5(C2xC6) = C2xHe3:4S3φ: C2xC6/C2C6 ⊆ Aut C3354C3^3:5(C2xC6)324,144
C33:6(C2xC6) = S32xC32φ: C2xC6/C3C22 ⊆ Aut C3336C3^3:6(C2xC6)324,165
C33:7(C2xC6) = C3xS3xC3:S3φ: C2xC6/C3C22 ⊆ Aut C3336C3^3:7(C2xC6)324,166
C33:8(C2xC6) = C3xC32:4D6φ: C2xC6/C3C22 ⊆ Aut C33124C3^3:8(C2xC6)324,167
C33:9(C2xC6) = C22xC3wrC3φ: C2xC6/C22C3 ⊆ Aut C3336C3^3:9(C2xC6)324,86
C33:10(C2xC6) = C2xC6xHe3φ: C2xC6/C22C3 ⊆ Aut C33108C3^3:10(C2xC6)324,152
C33:11(C2xC6) = S3xC32xC6φ: C2xC6/C6C2 ⊆ Aut C33108C3^3:11(C2xC6)324,172
C33:12(C2xC6) = C3:S3xC3xC6φ: C2xC6/C6C2 ⊆ Aut C3336C3^3:12(C2xC6)324,173
C33:13(C2xC6) = C6xC33:C2φ: C2xC6/C6C2 ⊆ Aut C33108C3^3:13(C2xC6)324,174

Non-split extensions G=N.Q with N=C33 and Q=C2xC6
extensionφ:Q→Aut NdρLabelID
C33.1(C2xC6) = C2xC32:C18φ: C2xC6/C2C6 ⊆ Aut C33366C3^3.1(C2xC6)324,62
C33.2(C2xC6) = C2xS3x3- 1+2φ: C2xC6/C2C6 ⊆ Aut C33366C3^3.2(C2xC6)324,141
C33.3(C2xC6) = S32xC9φ: C2xC6/C3C22 ⊆ Aut C33364C3^3.3(C2xC6)324,115
C33.4(C2xC6) = C22xC32:C9φ: C2xC6/C22C3 ⊆ Aut C33108C3^3.4(C2xC6)324,82
C33.5(C2xC6) = C2xC6x3- 1+2φ: C2xC6/C22C3 ⊆ Aut C33108C3^3.5(C2xC6)324,153
C33.6(C2xC6) = S3xC3xC18φ: C2xC6/C6C2 ⊆ Aut C33108C3^3.6(C2xC6)324,137
C33.7(C2xC6) = C18xC3:S3φ: C2xC6/C6C2 ⊆ Aut C33108C3^3.7(C2xC6)324,143

׿
x
:
Z
F
o
wr
Q
<